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Abstract. This paper describes the implementation of parallel comput-
ing to model seismic waves in heterogeneous media based on Laguerre
transform with respect to time. The main advantages of the transform are
a definite sign of the spatial part of the operator and its independence
of the parameter of separation. This property allows one to efficiently
organize parallel computations by means of decomposition of the com-
putational domain with successive application of the additive Schwarz
method. At each step of the Schwarz alternations, a system of linear
algebraic equations in each subdomain is resolved independently of all
the others. A proper choice of Domain Decomposition reduces the size
of matrices and ensures the use of direct solvers, in particular, the ones
based on LU decomposition. Thanks to the independence of the matrix
of the parameter of Laguerre transform with respect to time, LU decom-
position for each subdomain is done only once, saved in the memory and
used afterwards for different right-hand sides.

A software is being developed for a cluster using hybrid OpenMP
and MPI parallelization. At each cluster node, a system of linear alge-
braic equations with different right-hand sides is solved by the direct
sparse solver PARDISO from Intel Math Kernel Library (Intel MKL).
The solver is extensively parallelized and optimized for the high perfor-
mance on many core systems with shared memory. A high performance
parallel algorithm to solve the problem has been developed. The algo-
rithm scalability and efficiency is investigated. For a two-dimensional
heterogeneous medium, describing a realistic geological structure, which
is typical of the North Sea, the results of numerical modeling are
presented.

1 Introduction

The large-scale numerical simulation of elastic wave propagation in realistic 3D
heterogeneous media is impossible without parallel computations based on do-
main decomposition. So far, the most popular approach here is to use explicit
finite-difference schemes based on staggered grids, despite drawbacks such as the
necessity to perform data send/receive at each time step, full re-simulation of
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the wavefield for each new source, and hard disk data storage for implementation
of a reverse-time migration. In this regard, considerable attention has recently
been given to the development of alternative techniques for simulation of seis-
mic waves, especially, the ones working in the temporal frequency domain [1].
However, the use of such methods for general heterogeneous media also faces a
range of significant issues. The main issue is a consequence of the indefiniteness
of the impedance matrix. This property brings about a very slow rate of conver-
gence for the iterative procedures solving the linear algebraic equations resulting
from the finite-dimensional approximation of the elastic wave equations in the
temporal frequency domain.

Our motivation is to overcome this difficulty and to do that, we apply the
approach based on the Laguerre transform with respect to time. This leads to a
uniformly elliptic system of linear equations [2] and, so, ensures the convergence
of the Schwarz alternations [3], based on a suitable domain decomposition with
overlapping [4]. We choose the domain decomposition providing the possibility
of applying in each of elementary subdomains the LU factorization of the cor-
responding matrix. Once LU decomposition is performed, it is stored and later
used for each component of the Laguerre decomposition and each source posi-
tion. It should be stressed that it is a consequence of the main advantage of the
Laguerre transform: the matrix of the corresponding system does not depend on
the separation parameter and, hence, the LU factorization in each subdomain is
performed only once.

2 Statement of the Problem: Separation of Time

Let us consider a 2D system of second order elastic equations for a volumetric
source with zero initial conditions:
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Here ρ is density, λ, µ are Lamet coefficients (P, S-velocities is defined in the

following way: Vp =
√

λ+2µ
ρ and Vs =

√

µ
ρ ). The functions g(x, z) and h(x, z)

reflect spacial distribution of the source, f(t) is the source function. Further as
a function f(t) we will take the Richer impulse with dominant frequency ν0:
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2.1 Laguerre Transform and Additive Schwarz Method

The integral Laguerre transform for the function F (t) ∈ L2(0,∞) is given by
the following relation:

Fn =

∫ ∞

0

F (t)(ht)−
α
2 lαn(ht)dt, (2)

with the inversion formula

F (t) =

∞
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Fn · (ht)
α
2 lαn(ht). (3)

Here lαn(ht) are orthonormal Laguerre functions
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2 e−
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with h ∈ R+, α ∈ Z+ and Lα
n(ht) being classical Laguerre polynomials [5]:
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)

. (4)

h is the scaling parameter and it is responsible for dilation/compression of the La-
guerre functions. The parameter α reflects the attenuation rate i.e. for a smaller
size of α – the Laguerre function attenuate faster (see Figure 1).

Application of the integral Laguerre transform (2) to the system of elastic
equations (1) transforms it to the system of eliptic second order partial differ-
ential equations with a negative definite operator:
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Its right-hand side is defined by the recurrence formulas
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In order to define how many Laguerre functions should be used in expansion (3)
an empirical criterion is applyed. It is based on the fact that the waveform of
volumetric source in a 3D homogeneous medium coincides with the first deriva-
tion of the source function. That is why the number of Laguerre functions N is
chosen from the condition:

∫ T

0

⎡

⎣f ′(t− T )−

N(T )
∑

n=0

fn(ht)
−α/2lαn(ht)

⎤

⎦

2

dt ≤ ε2

that ensures the prescribed accuracy of the root-mean-square deviation of an
initial impulse from its expansion by the Laguerre functions on the time interval
(0, T ). An example of such a choice, but for an insufficient number of Laguerre
functions is shown in Figure 2.
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Fig. 1. The Laguerre functions lα
n
(ht) with n = 10, h = 100 for different values of α:

α = 5 on the left; α = 20 on the right

Fig. 2. Line 1 – the Richer impulse, line 2 – its reconstruction for some value of N
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3 Numerical Approximation and Organization of Parallel

Calculations

Parallelization of the algorithm is implemented on the base of the domain de-
composition and the additive Schwarz method.

3.1 Additive Schwarz Method

A full description of the additive Schwarz method can be found in [3,6]. The
basic idea of this method is to search for the solution not in the original compu-
tational domain, if it is too large, but to decompose it to elementary subdomains
of an appropriate size and to resolve the problem in each of these subdomains.
In particular, to resolve the boundary value problem in the domain D with the
boundary S, it is decomposed to two overlapping subdomains D1 and D2 (Figure
3), so two new boundaries S1 and S2 are introduced. The Schwarz alternations
start with computation of solutions within subdomainsD1 andD2 with arbitrary
boundary conditions on S1 and S2, respectively. For each subsequent iteration
(m+1), the solution in D1 is constructed using as boundary conditions on S1 the
trace of a solution in D2 computed by the previous iteration (m). The same pro-
cedure is used to update the solution in D2. The convergence of iterations for this
version of the additive Schwarz method is ensured by the negative definiteness
of the operator and overlapping of the neighboring subdomains [3,6].

As a stopping criterion for the Schwarz alternations, we should attain the
desired level of threshold of the following value:

Err = max

(

‖un
1 − un−1

1 ‖Γ

‖un−1
1 ‖Γ

,
‖un

2 − un−1
2 ‖Γ

‖un−1
2 ‖Γ

)

, (5)

where Err characterizes a relative correlation of the solution on two sequential
time steps, Γ is the unification of all the boundaries introduced by domain de-
composition on overlapping interfaces. In our numerical simulation, the threshold
Err ≤ 10−5.

Fig. 3. The overlapping domain decomposition and Schwarz iterations
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3.2 Restriction of the Computational Domain

In order to restrict the target area, we use a certain modification of the elastic
Perfectly Matched Layer (PML) presented in [7]. Such a modification was pro-
posed and implemented by G.V. Reshetova and V.A. Tcheverda [8]. The main
idea is to introduce the PML for a system of first order elastic equations and
then to implement the Laguerre transform. As a result, we obtain the following
system of equations:
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where (ū1,1)n−1, (ū1,2)n−1, (ū2,1)n−1, (ū2,2)n−1, (σ̄1,1)n−1, (σ̄1,2)n−1, (σ̄2,1)n−1,
(σ̄2,2)n−1, (σ̄3,1)n−1, (σ̄3,2)n−1 are calculated by the following recurrent relation:
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with a numerical value
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Here a is the beginning of the PML, δ is its width, R is the value of a desired level
of artificial reflection from the PML (in our experiments, it was taken R = 10−5).

Next let us multiply each odd equation of the system of equations (6) by
d2 = dz(z), each even equation by d1 = dx(x) and after several substitutions we
obtain the following system of second order partial differential equations:
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(ū2,2)n−1

]

+

+
(

h
2 + d2

)

∂
∂x

[

(σ̄3,1)n−1

h
2
+d1

+
(σ̄3,2)n−1

h
2
+d2

]

+

+
(

h
2 + d1

)

∂
∂z

[

(σ̄2,1)n−1

h
2
+d1

+
(σ̄2,2)n−1

h
2
+d2

]

− δ′2fn +
d′

2
δ(x−x0,z−z0)fn

h
2
+d1

.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(8)

It is worth mentioning that system (7) – (8) introduces an unsplit PML (see [8]).

3.3 Numerical Approximation

The finite-difference approximation of system (7) – (8) is done by the standard
staggered grid scheme [9] that was modified for second order systems [10]. Its
stencil is presented in Figure 4. Formally, we need u1 and u2 only, all other
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variables are complement. But their knowledge is necessary for simulation, and
so they are computed in the corresponding nodes.

This approximation gives a system of linear algebraic equations with a sparse
nine-diagonal matrix. It is worth mentioning that the matrix of this system does
not depend on the separation parameter n.

For each value of the separation parameter n, we have a system of linear
algebraic equations (SLAE) with the same sparse negative definite matrix but
with different right-hand sides. The negative definiteness of the matrix ensures
convergence of the additive Schwarz method (see [6]). Since it does not depend
on the separation parameter, it is reasonable to use direct solver on the base of
LU decomposition: in each subdomain it can be done only once, saved in the
RAM and subsequently be used for all right-hand sides.

J+1

J

J-1

J

I-3/2 I-1/2 I+1/2

Fig. 4. Stencil of the finite-difference scheme that is used for approximation of system
(7) – (8). Squares and circles are for un

1 and un

2 respectively, while σ is calculated in
triangles.

3.4 LU FACTORIZATION

In order to perform the LU factorization and to solve a SLAE for a large number
of right-hand sides we use Intel Math Kernel Library (Intel MKL) PARDISO di-
rect solver (http://software.intel.com/sites/products/documentation/doclib/m
kl sa/11/mklman/index.htm ) that is parallelized via OpenMP. The PARDISO
package is a shared-memory multiprocessing parallel direct solver, designed to
solve sparse SLAEs. It is based on row-column reordering of an initial matrix,
effective parallelization of a factorization and solving steps. To perform the row-
column permutation, Intel MKL PARDISO uses a nested dissection algorithm
from the METIS package [11] that decreases the size of a required RAM to
store LU factors. In Table 1 we present an amount of RAM required for LU
decomposition for the problem we deal with. One can conclude that

1. Because of a sparse structure of a matrix we need only a few megabytes of
RAM to store a matrix of finite-difference approximation.

2. The main amount of RAM is used to store the LU factorization.
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Table 1. Properties of the LU factorization of a nine-diagonal matrix obtained after
finite-difference approximation of system (7) – (8)

Domain Matrix Nonzero Nonzero LU (MB)
size, size elements elements

nx = nz of the matrix of LU factors

100 20 200 180 196 1 620 174 12

200 80 400 720 396 8 108 008 62

400 320 800 2 880 796 39 251 440 299

800 1 281 600 11 521 596 187 492 542 1 430

1 600 5 123 200 46 083 196 858 718 476 6 552

A factorization step of the Intel MKL PARDISO solver is extensively paral-
lelized and optimized for providing a high performance on multi-core systems
with shared memory. In order to improve the factorization performance, algo-
rithms of Intel MKL PARDISO are based on a Level-3 BLAS update. Moreover,
there are additional features in PARDISO, which can improve the performance,
in particular, left-looking [12] and two-level [13] factorization algorithms. The
first algorithm improves the scalability on a small number of threads while the
second – on many threads (more than eight). The computational cost of solv-
ing SLAE with many right-hand sides (RHS) is the same or higher than those
needed for factorization. A solving step in Intel MKL PARDISO is optimized
both for one RHS and for many RHS. The comparison of PARDISO vs. SuperLU
has been made on the cluster of Siberian Supercomputer Center (nodes based
on X5675 3.00 GHz Westmere). The results obtained are presented in the chart:

Fig. 5. Dependence the of normalized solving time on the number of RHS
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3.5 Parallel Computations

High performance computations are usually performed on computational sys-
tems with distributed memory or with MPP (Massive Parallel Processing) ar-
chitecture. Such systems consist of several nodes with several processors. Each of
them has access to RAM of this node. Each processor is usually multi-core. That
is why modern computational systems have a hybrid architecture and organized
as a set of nodes with distributed memory (MPP architecture), each of them is
also computational system with shared memory. Proposed numerical algorithm
is orientated onto such architectures and can be effectively loaded at any cluster
and consists of the following steps:

1. domain decomposition on ”elementary” subdomains providing possibility to
store the LU factorization in shared memory of a node (see Table 1);

2. usage of PARDISO MKL for effective parallel computations on the node
with OpenMP (SMP architecture);

3. exchanges between subdomains in the process of the Schwarz iterations via
MPI (MPP architecture).

The scheme of parallel computations is presented in Figure 6. Numerical ex-
periments were carried out on computational systems with a hybrid parallel
architecture. At each node, there are 8 GB RAM, so we can decompose our
computational domain to squares of 800× 800 mesh points.

Fig. 6. Parallel computations. Strips 1 correspond to overlapping of two neighbors,
while rectangles 2 match overlapping of four subdomains. Arrows correspond to the
direction of exchanges between the nodes (MPI).

4 Numerical Experiments

Numerical experiments were carried out on the high performance computer of
the Moscow State University with a hybrid parallel architecture: 519 nodes, each
of them consists of two quad-core processors and has 8 GB RAM.

The first experiments were performed to understand the main properties of
the method. We have considered a simplest situation: a homogeneous elastic
medium with the wave propagation velocities Vp = 2500 m/s, Vs = 2000 m/s
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and the density ρ = 2000 kg/m3. As the source function, we chose Ricker impulse
with dominant frequency 30 Hz. Parameters of the Laguerre transform: h = 300,
α = 5. For the total simulation time T = 3 s, 550 polynomials were used. The
size of the computational domain was 1000× 1000 m with PML.

4.1 Dependence of the Number of Iterations on the Width of

Overlapping

First of all, the dependence of the number of iterations on the width of over-
lapping is analyzed. These results are presented in Table 2. As one can see, the
optimal overlapping is equal to 25 points.

Table 2. Dependence of number of iterations on width of the overlapping

Width of the Width of the overlapping Number of iterations
overlapping (m) (number of mesh points)

30 15 7

40 20 6

50 25 5

70 35 5

Next both weak and strong scalabilities (see [14]) of the algorithm were
studied.

4.2 Weak Scalability

Schematically, the way to estimate weak scaling is presented in Figure 7. We fix
the load of a node that is equal to the size of the subdomain and enlarge the size
of the global computational domain. Thereby we enlarge the number of nodes.
As the measure for weak scaling, we use the following function:

effweak(N) =
T (N)

T (N0)
, (9)

where T (N) is the calculation time for N nodes as long as the size of the prob-
lem N times increases (Figure 7). The ideal weak scalability corresponds to
effweak(n) ≡ 1.

For the numerical experiment, we took 800×800 mesh points on each node.
In Figure 8 the curve T (N)/T (9) is presented. As can be seen, it has a low
variations around the one that reflects good weak scalability of the algorithm.

4.3 Strong Scalability

Schematically the way to estimate strong scaling is presented in Figure 9. In
contrast to weak scaling, here we fix the size of the global computational domain
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Fig. 7. Weak scaling comuputation

Fig. 8. Weak scalability of the algorithm

and enlarge the number of subdomains. To estimate strong scalability, we use
the following function:

effstrong(N) =
T (N)

N0 · T (N0)
, (10)

where N0 is the initial number of processes. The ideal strong scalability should
coincide with the linear dependence of calculation time on the number of pro-
cesses, that is T (N) = αN−1, where α is certain coefficient. That is why for the
ideal strong scalability effstrong(N) = N−1.

Numerical experiments to estimate strong scalability were carried out in the
same conditions as previously: a homogeneous medium, the Richer impulse with
dominant frequency 30 Hz, 550 Laguerre functions, a global computational do-
main of 2400×2400 mesh points, that is, nine initial subdomains of 800× 800
points, each of them being loaded on its own node.

The result (function 10) is presented in Figure 10 (line 2). Line 1 is the ideal
scalability. Thus, one can conclude that the algorithm possesses satisfactory
strong scalability as well.
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Fig. 9. Strong scaling comuputation

Fig. 10. Strong scalability of the algorithm: line 1 is the ideal scalability, line 2 is the
scalability obtained in the numerical experiment

5 Numerical Experiment for Realistic Model

Finally, we would like to present the results of the numerical experiment for
presented in Fig.11 (on the left) the realistic Gullfaks model, describing some
geological area of the North Sea [15].

The volumetric point source with coordinates (1620, 20) radiates a Ricker
impulse with the dominant frequency 30 Hz. The model was discretized on the
uniform grid hx = hz = 2 m that corresponds to 25 mesh points on a wavelength.
The integral Laguerre transform with 550 harmonics is computed with h = 300
and α = 3. The total simulation time is T = 3 s. The computational domain
is decomposed to (3 × 3) identical subdomains with overlapping of 50 m (25
points). To obtain solution with the residual Err ≤ 10−5 (see (5)) it took 10
Schwarz iterations. The result of this experiment is presented in Figure 11 (on
the right).
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Fig. 11. The 2D Gullfaks model: P-wave velocity (left image); a snapshot for the
Gullfaks model (right image)

6 Conclusions

This paper presents the algorithm for the numerical simulation of elastic waves in
an inhomogeneous medium based on decomposition of a computational domain,
implementation of the integral Laguerre transform and the additive Schwarz
method. This algorithm is ideally suited to parallel high-performance computers
with a hybrid architecture, representing a set of nodes that combine several
multi-core processors with shared memory that are unified by InfiniBand to
exchange the data between parallel processes at different nodes. The system of
linear algebraic equations for each subdomain is solved with the use of PARDISO
from Intel Math Kernel Library (Intel MKL), which is parallelized via OpenMP.
The revealed scalability of the algorithm confirms the prospects of the numerical
simulation on the base of this algorithm in 3D inhomogeneous media.

To conclude, let us point out that the LU factorization is not the only way to
solve the system obtained after numerical approximation. In particular we can
use the Cholesky factorization for interior subdomains (outside the PML) and the
LU factorization for boundary subdomains. Also one can use an approximation
of sparse matrices by matrices of a lower rank (see e.g. [16])).
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